Веб-бібліотека - головна сторінка


Основи митної справи / За ред. П.В. Пашка:

Митна справа в Україні. Історія розвитку митної справи в Україні та створення митних органів. Перші відомості про мито на території сучасної України. Митні порядки на Запорізькій Січі та у гетьманській Україні. Україна в складі Російської імперії. Митна справа в Україні на початку XX ст. Поняття "митна справа". Органи державного регулювання митної справи. Структура митних органів України. Завдання митних органів. Роль та місце митної справи в економічному розвитку України на сучасному етапі. Взаємовідносини митних органів України з іншими органами та особами. Завдання для перевірки знань. Митний контроль. Організація митного контролю. Здійснення митного контролю товарів і предметів, транспортних засобів...

Гончарук П. С. Історія України з найдавніших часів до початку ХХ століття: Давня історія України. Київська Русь. Виникнення людської цивілізації на українських землях. Східні слов'яни. Київська Русь та її історичне значення (у двох частинах). Політична історія Київської Русі (ІX-XIІІ ст. Соціально-економічний та етнічний розвиток Русі (ІX-XIII ст. Культура Київської Русі (ІX-XIII ст. Галицько-Волинське князівство. Українські землі у складі Литви та Польщі (XIV - перша половина XVII ст. Визволення України з-під влади Золотої Орди і боротьба за створення української держави (XIV-XV ст. Соціально-економічне та суспільно-політичне життя українського народу в кінці XV - першій пол. XVІІ ст. Консолідація та національно-духовні процеси у формуванні української народності у XV ст...
Хоменко І.В. Логіка для юристів: Визначення логіки як науки. Історичні етапи розвитку логічного знання. Міркування і його структура. Правильні та неправильні міркування. Поняття про логічну помилку. Логічна форма міркування. Визначення логічної форми. Формалізована мова. Метод формалізації. Основні компоненти логічної форми міркувань. Значення логіки для юристів. Контрольні запитання і вправи. Семіотичний характер логіки. Поняття про знак. Види знаків. Семіотика як наука про знаки. Структура знакового процесу. Структура значення знака. Типові логічні помилки. Структура значення знака і специфіка мови права. 6. Виміри і рівні знакового процесу. Контрольні запитання і вправи. Логічний аналіз понять. Загальна характеристика поняття. Структура поняття. Види понять...
Циганкова Т. М., Гордєєва Т. Ф. Міжнародні організації: Інституційне середовище міжнародного бізнесу. Міжнародні організації в системі регулювання міжнародних економічних відносин. Історія виникнення та етапи розвитку міжнародних організацій. Сутність сучасної міжнародної організації. Типізація міжнародних організацій. Механізм функціонування міжнародних організацій. Право міжнародних організацій. Механізми впливу міжнародних організацій на країни-члени. Прийняття рішень у міжнародних організаціях. Міжнародні службовці. Інститут постійних представництв держав при міжнародних організаціях. Запитання і завдання для обговорення. Міждержавні економічні організації. Сутність і види міждержавних організацій. Основні функції міждержавних організацій...
Шаповал М.І. Основи стандартизації, управління якістю і сертифікації: Стандарти - нормативна база управлінням якістю продукції і сертифікації. Загальні відомості про стандартизацію. Органи з стандартизації в Україні. Основні положення державної системи стандартизації України. Організація робіт з стандартизації і загальні вимоги до стандартів. Порядок впровадження стандартів і державний нагляд за їх додержанням. Вітчизняні системи стандартів. Роль уніфікації в промисловому виробництві. Нормоконтроль технічної документації. Техніко-економічна ефективність стандартизації. Міжнародна та європейська діяльність з стандартизації та участь у ній України. Основні тенденції розвитку міжнародної стандартизації систем якості. Міжнародні стандарти ISO серії 9000...

МОДЕЛИРОВАНИЕ

- представление процесса или ситуации с помощью модели. Применяется для исследования и/или управления. Процедуры моделирования используются как в чисто теоретических (математика, логика), так и в прикладных сферах. Можно выделить два типа моделирования, основанные на двух различных определениях модели.
В первом случае модель - это конструкция, изоморфная моделируемой системе. При таком моделировании каждому объекту системы ставится в соответствие определенный элемент моделирующей конструкции, а свойствам и отношениям объектов соответствуют свойства и отношения элементов. Классическими примерами моделей, основанных на изоморфизме, являются модели аксиоматических систем в математике. Они задают семантику формальных построений и создают возможность для содержательной интерпретации аксиом. Сами аксиомы, как и следствия из них, считаются предложениями некоторого формального языка. Кроме того, задана область интерпретаций, представляющая собой множество индивидных объектов. Изоморфизм задается функцией, сопоставляющей каждому имени языка некоторый объект из заданного множества, а каждому выражению языка некоторое отношение объектов этого же множества. Если любое высказывание, которое выведено из аксиом, истинно в области интерпретаций (т. е. соответствует реальным отношениям объектов), то эта область называется моделью системы аксиом. Моделирование в математике используется, напр., для доказательства непротиворечивости формальных систем. Так была, в частности, доказана непротиворечивость неевклидовых геометрий. При рассмотрении систем Лобачевского и Римана, как формально построенных аксиоматик, можно найти для каждой из них такое множество объектов в евклидовом пространстве, для которого существует описанное выше соответствие между этим множеством и системой аксиом. Поэтому геометрии Лобачевского и Римана непротиворечивы, если, конечно, непротиворечива евклидова геометрия.
Этот тип моделирования используется не только в чистой математике, но также при математическом описании природных, общественных, технологических и т. п. систем. Смысл такого описания состоит в том, что отношения между элементами системы выражаются с помощью уравнений, причем так, чтобы каждому термину содержательного описания системы соответствовала какая-либо величина (константа или переменная) или функция, фигурирующая в уравнении. Сами уравнения называются при этом моделью. Чаще всего математическое моделирование требует абстракции, т. е. отвлечения от некоторых свойств и отношений в моделируемой системе. Это позволяет достичь общности модели и утверждать, что она, игнорируя частности, описывает достаточно широкий круг процессов или систем. К тому же без таких упрощений моделирование оказывается бессмысленным (из-за чрезмерной сложности модели) или вообще невозможным. Другим важным гносеологическим условием моделирования является измеримость всех описываемых объектов и отношений. Чтобы построить модель, необходимо найти их числовое представление. Всякий моделируемый процесс должен быть полностью охарактеризован с помощью параметров, поддающихся измерению.
Второй тип моделирования основан на понятии "черный ящик". Этим термином называют в кибернетике объект, внутренняя структура которого недоступна для наблюдения и о котором можно судить только по его внешнему поведению, в частности по тому, как он преобразует приходящие на вход сигналы. Если некоторая система слишком сложна, то нет смысла искать ее математическое описание. Проще попытаться построить вместо нее другую систему, которая при заданных условиях будет вести себя точно так же. Такое моделирование часто используется при исследовании отдельных систем живых организмов с помощью компьютерной симуляции. Описать работу живого организма уравнениями крайне тяжело. Но возможно построить компьютерную схему, которая при подаче на вход определенного стимула давала бы на выходе реакцию, тождественную или близкую к реакции моделируемой системы. Если спектр совпадающих входных и выходных процессов достаточно широк, то можно ожидать, что построенная схема точно воспроизводит исследуемый объект.
Лит.: Эшби У. Р. Введение в кибернетику. М., 1959; ГастевЮ. А. Гомоморфизмы и модели. Логико-алгебраические аспекты моделирования. М., 1975; Кузин Л. Т. Основы кибернетики. В 2-х т. М., 1979; Бу.юсДж., Джефри Р. Вычислимость и логика. М., 1994.
Г. Б. Гутнер